Force

Factorization

Unit: 9

Book Icon Class 9: Mathematics

Factorization, Important Formulae, Example Questions with Solutions, Factorization of the expression in the form of \(a^4 + a^2b^2 + b^4\), Example Questions with Solutions

Factorization

The process of expressing a polynomial expression as the product of its factor is called factorization. In this case, the part of the expression is called the factor of the polynomial. 

Example:

If the polynomial \(x^2 + 5x + 6\) is expressed as \((x+3) (x+2)\) then \((x+3) \text{ and } (x+2)\) are the factors of \(x^2 + 5x + 6\)

 

Important Formulae

Here are the important formulae that can be used while solving the problems.

\( \begin{aligned} & \text{Formulae} \\ & 1. (a + b)^2 = a^2 + 2ab + b^2 \\ & 2. (a - b)^2 = a^2 - 2ab + b^2 \\ & 3. (a^2 + b^2) = (a + b)^2 – 2ab \text{ or, } (a - b)^2 + 2ab \\ & 4. (a^2 – b^2) = (a + b)(a - b) \\ & 5. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \\ & 6. (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \\ & 7. (a^3 + b^3) = (a + b)(a^2 + ab + b^2) \\ & 8. (a^3 - b^3) = (a - b)(a^2 + ab + b^2) \\ \end{aligned} \)

 

Example Questions with Solutions

Tips and Tricks

Some Tips and Tricks for Factorizing the given expressions.

  1. Look for a common factor.
  2. Analyze the expression to see if we can use formulae.
  3. Check your steps thoroughly to see if anything went wrong.

 

Example Questions with Solutions

\( \begin{aligned} & \text{ Q1. Factorize } (x + 2)^3 \\ & \text{Solution:} \\ & = (x + 2)^3 \\ & = x^3 + 3 \cdot x^2 \cdot 2 + 3 \cdot x \cdot 2^2 + 2^3\\ & \therefore x^3 + 6x^2 + 12x + 8 \end{aligned} \)
\( \begin{aligned} & \text{ Q2. Factorize } 8x^4 + 27x \\ & \text{Solution:} \\ & = 8x^4 + 27x \\ & = x(8x^3 + 27) \\ & = x\lbrace(2x)^3 + 3^3\rbrace \\ & = x[(2x + 3)\lbrace(2x)^2 + 2x \cdot 3 + 3^2\rbrace] \\ & \therefore x(2x + 3)(4x^2 + 6x + 9) \\ \end{aligned} \)
\( \begin{aligned} & \text{ Q3. Factorize } (\frac{x^3}{y^3} - \frac{y^3}{x^3}) \\ & \text{Solution:} \\ & = \frac{x^3}{y^3} - \frac{y^3}{x^3} \\ & = (\frac {x}{y})^3 – (\frac{y}{x})^3 \\ & = (\frac{x}{y} - \frac{y}{x}) \lbrace (\frac{x}{y})^2 + \frac{x}{y} \cdot \frac{y}{x} + (\frac{y}{x})^2\rbrace \\ & \therefore (\frac{x}{y} - \frac{y}{x}) (\frac{x^2}{y^2} + \frac{y^2}{x^2} + 1) \\ \end{aligned} \)

 

Factorization of the expression in the form of \((a^4 + a^2b^2 + b^4)\)

Here are the general steps for the factorization of the expression in the form of \((a^4 + a^2b^2 + b^4)\).

\( \begin{aligned} & \text{Steps} \\ & = a^4 + a^2b^2 + b^4 \\ & = (a^2)^2 + (b^2)^2 + a^2b^2\\ & = (a^2 + b^2)^2 – 2a^2b^2 + a^2b^2\\ & = (a^2 + b^2)^2 – (ab)^2\\ & \therefore (a^2 + ab + b^2)( a^2 - ab + b^2) \end{aligned} \)

 

Example Questions with Solution

Here are some example questions and solutions.

\( \begin{aligned} & \text{Q1. Factorize } (x^4 + x^2y^2 + y^4) \\ & \text{Solution:} \\ & = x^4 + x^2y^2 + y^4 \\ & = (x^2)^2 + (y^2)^2 + x^2y^2\\ & = (x^2 + y^2)^2 – 2x^2y^2 + x^2y^2\\ & = (x^2 + y^2)^2 – (xy)^2\\ & \therefore (x^2 + xy + y^2)( x^2 - xy + y^2) \end{aligned} \)
\( \begin{aligned} & \text{Q2. Factorize } (x^4 + 5x^2y^2 + 4y^4) \\ & \text{Solution:} \\ & = x^4 - 5x^2y^2 + 4y^4 \\ & = (x^2)^2 + (2y^2)^2 - 5x^2y^2 \\ & = (x^2 + 2y^2)^2 – 2 \cdot x^2 \cdot 2y^2 - 5x^2y^2 \\ & = (x^2 + 2y^2)^2 – 4x^2y^2 - 5x^2y^2 \\ & = (x^2 + 2y^2)^2 – 9x^2y^2 \\ & = (x^2 + 2y^2)^2 – (3xy)^2 \\ & \therefore (x^2 + 3xy + 2y^2)( x^2 - 3xy + 2y^2) \end{aligned} \)
\( \begin{aligned} & \text{Q3. Factorize } (y^4 + \frac{1}{y^4} + 1) \\ & \text{Solution:} \\ & = y^4 + \frac{1}{y^4} + 1 \\ & = (y^2)^2 + (\frac{1}{y^2})^2 + 1 \\ & = (y^2 + \frac{1}{y^2})^2 – 2 \cdot y^2 \cdot \frac{1}{y^2} + 1 \\ & = (y^2 + \frac{1}{y^2})^2 – 2 + 1 \\ & = (y^2 + \frac{1}{y^2})^2 – 1^2 \\ & \therefore (y^2 + \frac{1}{y^2} + 1)(y^2 + \frac{1}{y^2} - 1) \end{aligned} \)

 

Share Now

Hupen © | All right reserved.
Handcrafted with by Hupen Design