Force

HCF and LCM

Unit: 10

Book Icon Class 9: Mathematics

Highest Common Factor (HCF), Important Formulae, Example Questions with Solutions, Lowest Common Multiple (LCM), Important Formulae, Example Questions with Solutions

HCF (Highest Common Factor)

The HCF of two or more numbers or expressions is the largest factor that divides all of them without leaving a remainder. For algebraic expressions, it’s the highest degree of common terms in all expressions.

\( \begin{aligned} & \text{Important Formula:} \\ & \text{HCF} = \text{Common Factor} \\ & \text{Note:} \\ & \text{HCF will be ‘1’ if no common factor exists.} \end{aligned} \)

 

Example Questions with Solutions

Here are the example questions and answers for finding the HCF of given expressions.

\( \begin{aligned} & \text{Q1. Find the HCF of:} (x^2 - 9), (x^3 + 27) \\ & Sol^n: \text{Here, First Expression: } \\ & = (x^2 - 9) \\ & = x^2 – 3^2 \\ & = (x + 3) (x-3) \\ \\ & \text{Also, Second Expression:} \\ & = (x^3 + 27) \\ & = x^3 + 3^3 \\ & = (x + 3) (x^2 + x \cdot 3 + 3^2) \\ & = (x + 3) (x^2 + 3x + 9) \\ & \therefore \text{HCF} = \text{Common Factor} = (x + 3) \end{aligned} \)
\( \begin{aligned} & \text{Q2. Find the HCF of: } (2a^3 - a^2 + a - 2), (a^3 – a^2 + a - 1) \\ & Sol^n: \text{Here, First Expression: } \\ & = (2a^3 - a^2 + a - 2) \\ & = 2a^3 – 2 - a^2 + a \\ & = 2(a^3 – 1) – a(a - 1) \\ & = 2\lbrace (a – 1)(a^2 + a \cdot 1 + 1^2 )\rbrace – a(a - 1) \\ & = 2\lbrace (a – 1)(a^2 + a + 1)\rbrace – a(a - 1) \\ & = (a - 1)\lbrace 2(a^2 + a + 1) – a \rbrace \\ \\ & \text{Second Expression:} \\ & = (a^3 – a^2 + a - 1) \\ & = (a^3 – 1^3 - a^2 + a) \\ & = (a - 1) (a^2 + a \cdot 1 + 1^1) – a(a - 1)) \\ & = (a - 1) (a^2 + a + 1) – a(a - 1)) \\ & = (a - 1) (a^2 + a + 1 – a) \\ & = (a - 1) (a^2 + 1) \\ & \therefore \text{HCF} = \text{Common Factor} = (a - 1) \end{aligned} \)
\( \begin{aligned} & \text{Q3. Find the HCF of: } (a^3 - b^3), (a^3 – a^2b + ab^2), (a^4 + a^2b^2 + b^4) \\ & Sol^n: \text{Here, First Expression: } \\ & = (a^3 - b^3)\\ & = (a + b)(a^2 - ab + b^2) \\ \\ & \text{Also, Second Expression:} \\ & = (a^3 – a^2b + ab^2) \\ & = a (a^2 – ab + b^2) \\ \\ & \text{And, Third Expression:} \\ & = (a^4 + a^2b^2 + b^4) \\ & = (a^2 + ab + b^2) (a^2 – ab + b^2) \\ & \therefore \text{HCF} = \text{Common Factor} = (a^2 – ab + b^2) \end{aligned} \)

 

LCM (Lowest Common Multiple)

The LCM of two or more numbers or expressions is the smallest multiple that is divisible by all of them. For algebraic expressions, it involves the smallest expression that all given expressions can divide without leaving a remainder.

\( \begin{aligned} & \text{Important Formula:} \\ & \text{LCM} = \text{Common Factor } \times \text{ Remaining Factor} \end{aligned} \)

 

Example Questions and Solutions

Here are the example questions and answers for finding the HCF of given expressions.

\( \begin{aligned} & \text{Q1. Find the LCM of: } (a^3 – y^3), (a^4 + a^2y^2 + y^4) \\ & Sol^n: \text{Here, First Expression: } \\ & = (a^3 – y^3) \\ & = (a - y)(a^2 + ay + y^2) \\ \\ & \text{Also, Second Expression:} \\ & = (a^4 + a^2y^2 + y^4)  \\ & = (a^2 + ay + y^2) (a^2 - ay + y^2) \\ & \text{Now, Common Factor} = (a^2 + ay + y^2) \\ & \text{And, Remaining Factor} = (a - y)(a^2 - ay + y^2) \\ & \text{So,} \text{LCM} = \text{Common Factor} \times \text{Remaining Factor} \\ & \therefore \text{LCM} = (a^2 + ay + y^2) (a - y)(a^2 - ay + b^2) \end{aligned} \)
\( \begin{aligned} & \text{Q2. Find the LCM of: } (\frac{x^4}{y^4} + \frac{y^4}{x^4} + 1), (\frac{x^3}{y^3} + \frac{y^3}{x^3})\\ & Sol^n: \text{Here, First Expression: } \\ & = (\frac{x^4}{y^4} + \frac{y^4}{x^4} + 1) \\ & = (\frac{x^2}{y^2} + \frac{y^2}{x^2} + 1) (\frac{x^2}{y^2} + \frac{y^2}{x^2} - 1) \\ \\ & \text{Also, Second Expression:} \\ & = (\frac{x^3}{y^3} + \frac{y^3}{x^3}) \\ & = (\frac{x}{y} + \frac{y}{x})(\frac{x^2}{y^2} + \frac{y^2}{x^2} + 1) \\ & \text{Now, Common Factor} = (\frac{x^2}{y^2} + \frac{y^2}{x^2} + 1) \\ & \text{And, Remaining Factor} = (\frac{x}{y} + \frac{y}{x})(\frac{x^2}{y^2} + \frac{y^2}{x^2} - 1) \\ & \text{So,} \text{LCM} = \text{Common Factor} \times \text{Remaining Factor} \\ & \therefore \text{LCM} = (\frac{x^2}{y^2} + \frac{y^2}{x^2} + 1) (\frac{x}{y} + \frac{y}{x})(\frac{x^2}{y^2} + \frac{y^2}{x^2} - 1) \end{aligned} \)
\( \begin{aligned} & \text{Q3. Find the LCM of: } (x^3 + 1), (x^4 – x^3 + x^2), (x^3 – x^2 + x ) \\ & Sol^n: \text{Here, First Expression: } \\ & = (x^3 + 1) \\ & = (x + 1)(x^2 + x + 1) \\ \\ & \text{Also, Second Expression:} \\ & = (x^4 – x^3 + x^2) \\ & = x^2(x^2 – x + 1) \\ \\ & \text{And, Third Expression:} \\ & = (x^3 – x^2 + x )\\ & = x(x^2 – x + 1) \\ \\ & \text{Now, Common Factor} = 1 \\ & \text{And, Remaining Factor} = x^2(x + 1)(x^2 + x + 1) (x^2 – x + 1)  \\ & \text{So,} \text{LCM} = \text{Common Factor} \times \text{Remaining Factor} \\ & \therefore \text{LCM} = x^2(x + 1)(x^2 + x + 1) (x^2 – x + 1) \end{aligned} \)

 

Share Now

© Hupen. All rights reserved.

Handcrafted with by Hupen Design