Force

Trigonometry

Unit: 7

Book Icon Class 10: Optional Math

Trigonometric Relations of Multiple Angles, Trigonometric Relations of Sub-Multiple Angles, Transformation of Trigonometric Ratios, Conditional Trigonometric Identities, Trigonometric Equation, Height and Distance

Trigonometric Relations of Multiple Angles

What are multiple angles?

If A is an angle, multiples of A i.e. 2A, 3A, 4A, … etc are called multiple angles of A.

Formulas Related to Multiple Angles

\(\begin{aligned} & 1. sin2A = 2sinAcosA \\ & 2. cos2A = cos^{2}A – sin^{2}A, 2cos^{2}A – 1, 1 – 2sin^{2}A \\ & 3. tan2A = \frac{2tanA}{1 – tan^{2}A} \\ & 4. sin3A = 3sinA – 4sin^{3}A \\ & 5. cos3A = 4cos^{3}A – 3cosA \\ & 6. tan3A = \frac{3tanA – tan^{3}A}{1-3tan^{2}A} \end{aligned}\)

 

Trigonometric Relations of Sub-Multiple Angles

What are sub-multiple angles?

If \(A\) is an angle, then \(\frac{A}{2}\), \(\frac{A}{3}\), \(\frac{A}{4}\), … \(\frac{A}{n}\) , \(n \in N\) are called multiple angles of \(A\).

 

Formulas Related to Sub-multiple Angles

\(\begin{aligned} & 1. sinA = 2sin\frac{A}{2}cos\frac{A}{2} \\ & 2. cosA = cos^{2}\frac{A}{2} – sin^{2}\frac{A}{2}, 2cos^{2}\frac{A}{2} – 1, 1 – 2sin^{2}\frac{A}{2} \\ & 3. tanA = \frac{2tan\frac{A}{2}}{1 – tan^{2}\frac{A}{2}} \\ & 4. sinA = 3sin\frac{A}{3} – 4sin^{3}\frac{A}{3} \\ & 5. cosA = 4cos^{3}\frac{A}{3} – 3cos\frac{A}{3} \\ & 6. tanA = \frac{3tan\frac{A}{3} – tan^{3}\frac{A}{3}}{1-3tan^{2}\frac{A}{3}} \end{aligned}\)

 

Transformation of Trigonometric Ratios

The transformation from multiplication to addition or subtraction.

\(\begin{aligned} & 1. 2sinA.cosB = sin(A+B) + sin(A-B) \\ & 2. 2cosA.sinB = sin(A+B) - sin(A-B) \\ & 3. 2cosA.cosB = cos(A+B) + cos(A-B) \\ & 4. 2sinA.sinB = cos(A-B) - sin(A+B) \\ \end{aligned}\)

 

The transformation from multiplication to addition or subtraction.

\(\begin{aligned} & 1. sinC + sinD = 2sin(\frac{C+D}{2})cos(\frac{C-D}{2}) \\ & 2. sinC - sinD = 2cos(\frac{C+D}{2})sin(\frac{C-D}{2}) \\ & 3. cosC + cosD = 2cos(\frac{C+D}{2})cos(\frac{C-D}{2}) \\ & 4. cosC - cosD = 2sin(\frac{C+D}{2})sin(\frac{C-D}{2}) \\ \end{aligned}\)

 

Trigonometric Equation

A trigonometric equation is an equation that involves trigonometric ratios like sin, cos, tan, etc. and a variable (usually an angle). 

Example: 

\(\sin x = 0.5\)

This equation means we need to find the values of \(x\) (angle) where \(sin x = 0.5\). 

One solution is \(x = 30°\) (or \(π/6\) in radians), but there are more solutions since sine is periodic.

\(\begin{aligned} & Solve. (0 \leq \theta \leq 360^\circ) \\ & \text{Q. } cos\theta + cos3\theta = 2cos2\theta \\ & \text{Solution: } \\ & \text{or, } cos\theta + 4cos^{3}\theta – 3cos\theta = 2(2cos^{2}\theta - 1) \\ & \text{or, } 4 cos^{3}\theta – 2 cos\theta = 4 cos^{2}\theta - 2 \\ & \text{or, } 4 cos^{3}\theta – 2 cos\theta - 4cos^{2}\theta + 2 = 0 \\ & \text{or, } 4 cos^{3}\theta - 4cos^{2}\theta – 2 cos\theta + 2 = 0 \\ & \text{or, } 4 cos^{2}\theta (cos\theta - 1) - 2 (cos\theta – 1) = 0 \\ & \text{or, } (cos\theta - 1) (4 cos^{2}\theta - 2)= 0 \\ & \text{Either } cos\theta – 1 = 0 \\ & \text{or, } cos\theta = 1 \\ & \text{or, } cos\theta = cos0^\circ, cos360^\circ \\ & \therefore \theta = 0^\circ, 360^\circ \\ \\ & \text{OR, } 4 cos^{2}\theta – 2 = 0 \\ & \text{or, } 4 cos^{2}\theta = 2 \\ & \text{or, } cos^{2}\theta = \frac{1}{2} \\ & \text{or, } cos\theta = \frac{1}{\sqrt{2}} \\ & \text{or, } cos\theta = cos45^\circ, cos(360^\circ – 45^\circ) \\ & \text{or, } cos\theta = cos45^\circ, cos(315^\circ) \\ & \therefore \theta = 45^\circ , 315^\circ \\ & \text{Hence, } \theta = 0^\circ , 45^\circ , 315^\circ , 360^\circ \text{ (Answer)} \end{aligned}\)

 

Share Now

© Hupen. All rights reserved.

Handcrafted with by Hupen Design