Force

Indices

Unit: 12

Book Icon Class 9: Mathematics

Indices, Formula for Indices, Example Questions with solutions

Indices

Indices, (also known as exponents or powers), are a way of representing how many times a number or variable (the base) is multiplied by itself. For example, in \(2^3\), 2 is the base, and 3 is the index (or exponent), meaning \(2 \times 2 \times 2 = 8\).

\(\text{So, } a \times a \times a \times a = a^4\)

 

Formula for Indices

Here are some key formulas for working with indices:

1. Multiplication Rule: \( a^m \times a^n = a^{m+n} \)

2. Division Rule: \( \frac{a^m}{a^n} = a^{m-n} \) (where \( a \neq 0 \))

3. Power of a Power Rule: \( (a^m)^n = a^{m \times n} \)

4. Power of a Product Rule: \( (ab)^n = a^n \times b^n \)

5. Zero Exponent Rule: \( a^0 = 1 \) (where \( a \neq 0 \))

6. Negative Exponent Rule: \( a^{-n} = \frac{1}{a^n} \)

7. \(n^{th}\) Root Rule: \( \sqrt[n]{a} = a^{\frac{1}{n}} \)

 

Example Questions with solutions

\( \begin{aligned} & \text{Q1. Find the value of: } 2^3 \times 2^5 \\ & \text{Solution:} \\ & = 2^3 \times 2^5 \\ & = 2^{(3+5)} \\ & \therefore 2^8 \text{ (Answer)} \end{aligned} \)
\( \begin{aligned} & \text{Q2. Find the value of: } (\frac{x^m}{x^{-n}})^{m^2-mn+n^2} \times (\frac{x^n}{x^{-l}})^{n^2-nl+l^2} \times (\frac{x^l}{x^{-m}})^{l^2-lm+l^2} \\ & \text{Solution:} \\ & = (\frac{x^m}{x^{-n}})^{m^2-mn+n^2} \times (\frac{x^n}{x^{-l}})^{n^2-nl+l^2} \times (\frac{x^l}{x^{-m}})^{l^2-lm+m^2} \\ & = x^{(m+n)(m^2-mn-n^2)} \times x^{(n+1)(n^2-nl+l^2)} \times x^{(l+m)(l^2-lm+m^2)} \\ & = x^{(m^3 + n^3)} \times x^{(n^3 + l^3)} \times x^{(l^3 + m^3)} \\ & = x^{(m^3 + n^3 + n^3 + l^3 +l^3 + m^3)} \\ & \therefore x^{2(l^3 + m^3 + n^3)} \text{ (Answer)} \end{aligned} \)
\( \begin{aligned} & \text{Q3. Prove: } \frac{1}{1 + x^{a-b} + x^{c-b}} + \frac{1}{1 + x^{b-c} + x^{a-c}} + \frac{1}{1 + x^{c-a} + x^{b-a}} = 1 \\ & \text{Solution:} \\ & \text{LHS:} \\ & = \frac{1}{1 + x^{a-b} + x^{c-b}} + \frac{1}{1 + x^{b-c} + x^{a-c}} + \frac{1}{1 + x^{c-a} + x^{b-a}} \\ & = \frac{1}{1 + \frac{x^a}{x^b} + \frac{x^c} {x^b}} + \frac{1}{1 + \frac{x^b}{x^c} + \frac{x^a}{x^c}} + \frac{1}{1 + \frac{x^c}{x^a} + \frac{x^b}{x^a}} \\ & = \frac{1}{\frac{x^b + x^a + x^c}{x^b}} + \frac{1}{\frac{x^c + x^b + x^a}{x^c}} + \frac{1}{\frac{x^a + x^c + x^b}{x^a}} \\ & = \frac{x^b}{x^a + x^b +x^c} + \frac{x^c}{x^a + x^b +x^c} + \frac{x^a}{x^a + x^b +x^c} \\ & = \frac{x^a + x^b +x^c}{x^a + x^b +x^c} \\ & = 1 =\text{RHS} \\ & \therefore \text{Hence Proved} \end{aligned} \)

 

Share Now

© Hupen. All rights reserved.

Handcrafted with by Hupen Design